Immune System and how Vaccines Work

Kevin Connolly

Waterford, August 30th, 2012

Causes of death, 1811, Boston

Abscesses -	-	1.	Hernia, or Rupture -	s
Aneurism		- 1:	Jaundice	10
Apoplexy -	-	13 :	Inflammation of the bowels .	1
Burns or Scalds -		- 6 :	of the stomach	1
Cancer	-	5 .	Killed by lightning	1
Casualties		- 15 :	Insanity	1
Childbed		14 :	Intemperance	2
Cholera Morbus -		- 6 -	Locked jaw	2
Colic		2:	Mortification	11
Consumption		221 :	Old Age	26
Convulsions -		36 .	Palsy	12
Cramp in the stomach		- 2 -	Pieurisy	8
Croup	-	1:	Quinsy	15
Debility		- 28 :	Rheumatism	1
Decay	-	20 .	Rupture of blood vessels -	1
Diarrhea		- 15 :	Small-Pox, (at Rainsford's Islan	1d)2
Drinking cold water	-	2:	Sore throat	1
Dropsy		- 21 .	Spasms	2
- in the head	•	23 -	Stillborn	49
Drowned -		- 13 :	Suicide	1
Disentery		14 '	Sudden death	25
Dispepsia or Indigestion		- 15 -	Syphilis	12
Fever, bilious -		7:	Teething	15
- pulmonic -		- 46 :	Worms	11
inflammatory	-	24 :	Whooping Cough	14
putrid -	-	6 :	White swelling	2
typhus -		- 33 :	Diseases not mentioned -	48
Flux infantile -		57 :		
Gout		3 .	Total,	942
Hoemorrhage .		4 :		

The Battle Between Us and the Bugs: What we can do

- We recognize them as something different not belonging inside the body
- Once recognized we try and kill them
- We have two systems of doing this:
 - The Innate system
 - The Adaptive system

Host Defenses Innate and adaptive

Nonspecific Resistance		Specific Resistance (Responses of the Immune System, Chapter 17)		
First line of defense	Second line of defense	Third line of defense		
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytic white blood cells Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: B cells and T cells Antibodies Gell-mediated immune response 		

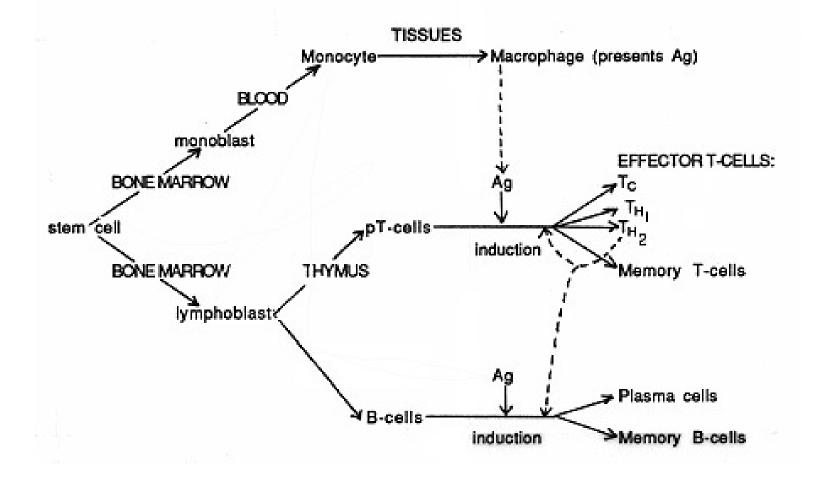
Natural Defences

Mechanism	Explained
Skin	Impenetrable collagen and keratin Skin surface commensal bacteriae compete with pathogenic bacteria.
Tears	Contain lysozyme which breaks down cell wall of pathogens
Saliva	Contains lysozyme Pathogens swallowed are destroyed in the <u>stomach</u> .
Mucous	Traps microorganisms that may be breathed in.
Cilia	move the mucous.

Innate immune system

Definition: cells and mechanisms that defend the host from infection by other organisms in a non-specific manner.

Functions


Т

-Acting as physical and chemical barrier to infectious agents.
-Recruiting immune cells to sites of infection, through production of cytokines
-Activation of the complement cascade to identify bacteria, activate cells and promote clearance of dead cells or antibody complexes.
-Identification and removal of foreign substances (present in organs, tissues, blood and lymph) by WBCS.
-Activation of the adaptive immune system through antigen presentation.

Cellular participants in the Immune responses

- Phagocytic cells (dendritic cells, macrophages, and granulocytes)
- Antigen presenting cells (dendritic cells, macrophages, B lymphocytes, helper T cells)
- Antibody producing cells (plasma cells)
- Cytotoxic cells (CTL, NK)
- Regulatory cells (APCs, helper T cells, regulatory T cells)
- Cells-in-waiting (memory B cells, monocytes)
- Chemical releasing cells (basophils, eosinophils, neutrophils; mast cells - histamine, cytokines; hepatocytes - complement proteins)

Cells of the Immune system

Adaptive immunity

Lymphocytes are present, but <u>few in number</u> and <u>not</u> ready to respond immediately (must "wait" until it binds to the antigen for which it is specific) Each lymphocyte can bind to only one antigen.

Responses **improve** with use (the lymphocyte population expands as an "**adaption**" to the first exposure to the antigen -> "memory" cells) Generally effective against **bacterial** pathogens, **extracellular viruses, virusinfected cells** and **exotoxins**

Antibodies are the molecular component of the adaptive immune system

Adaptive response can also assist the innate immune system

- Can help macrophages (TH₁-helper lymphocytes)
- Can activate complement (antibody when it binds to antigen)

LYMPHOCYTES

• Responsible for the specific immune response.

•

- Represent 20-40% of circulating WBC in blood
- T lymphocytes, B lymphocytes and natural killer (NK) cells.
- T and B lymphocytes cannot be distinguished from each other morphologically.
- Once stimulated with antigen differentiate into effector cells or memory cells. [Plasma cells, T-helper cells, T-cytotoxic cells].
- Memory cells are long-lived cells activated by a second encounter with antigen.
- Different lineages or stages of lymphocytes distinguished by their membrane CD molecules (<u>Cluster of Differentiation (CD)</u>

NK (natural killer) Cells

- Cytotoxic granules in cytoplasm contain proteins such as perforin and proteases.
- On release near a "baddie" cell, perforin forms pores in the cell membrane of the target cell,
- through which the proteases enter, inducing either apoptosis or cell lysis.
- Lysing a virus-infected cell would release the virions
- Apoptosis destroys the virus

B lymphocytes

•Originate in the bone marrow,

- Mature in secondary lymphoid tissues
- Become activated in the spleen or nodes when their surface immunoglobulins bind to an antigen
- •Differentiate either into plasma cells or memory B cells.

T-lymphocytes

- Formed in **bone marrow**, **mature** in the **thymus**.
- Make up 65 to 85% of the peripheral blood lymphocytes.
- Have markers on their surfaces (antigens)
- Start to express these markers during their maturation in the thymus.
- Also populate the peripheral lymphoid tissues

Three types of T-cell:

- **Cytotoxic T-cells** (killer cells) destroy their targets by releasing perforin, which makes a hole in target cell wall, allowing H2O, ions to enter, and thereby killing it.
- Helper T cells, which regulate immune responses by releasing cytokines.
- **Suppressor T-cells**, which downregulate both humoral and cell-mediated immune responses. (These last two types are known as **Regulatory T-cells**)

Adaptive Immune System

<u>**Def</u>**.: antibody and cell-mediated responses carried out by B and T cells.</u>

Functions:

-Antibody production.

-Activation of macrophages, natural killer cells (NK), antigen-specific cytotoxic T-lymphocytes.

-Release of cytokines

-Recognition of "non-self" antigens

- Generation of responses tailored to maximally eliminate specific pathogens or pathogen infected cells.

-Development of immune memory

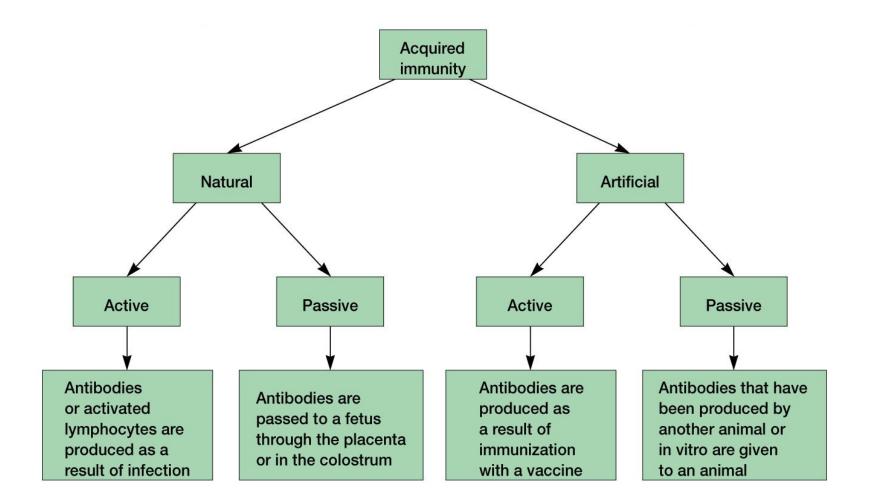
Humoral Immunity

Definition: production of antibodies in response to an antigen.

Most effective against bacteria, bacterial toxins, and viruses prior to these entering cells.

<u>Antibodies</u> (immunoglobulins): proteins produced by B-lymphocytes and plasma cells in response to an antigen and capable of reacting with that antigen.

Antibodies work by::


1. Opsonization (rendering bacteria and other cells subject to phagocytosis)

- 2. MAC (membrane attack complex) Cytolysis
- 3. Cellular Cytotoxicity by NK Cells
- 4. Neutralization of Exotoxins
- 5. Neutralization of Viruses
- 6. Preventing Bacterial Adherence to Host Cells
- 7. Agglutination of Microorganisms
- 8. Immobilization of Bacteria and Protozoans.

Summary of Responses to Organisms

- Circulating antibodies inactivate or target organism
- Macrophage \rightarrow inflammation, interferon, cell activation
- Th, Tc, NK & B cells \rightarrow plasma cells \rightarrow antibodies

Types of Acquired Immunity

Passive and Active Immunization

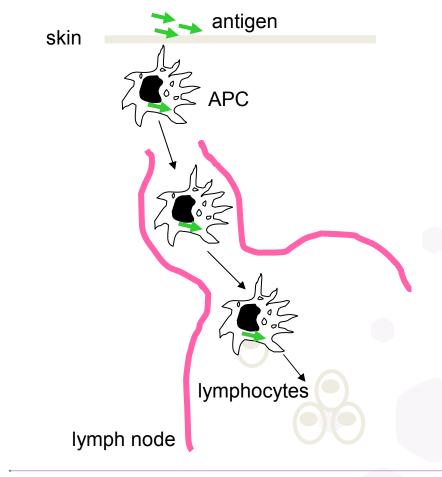
Passive Immunization –

Natural maternal serum/milk Artificial immune serum No immunological memory without T_h cells.

Active Immunization –

Natural infection Vaccination Live attenuated organisms inactivated organisms (dead) Cloned genes of microbiological antigens Subunit (purified microbial proteins) Synthetic peptides DNA

Induction of adaptive immune response, with protection and memory.

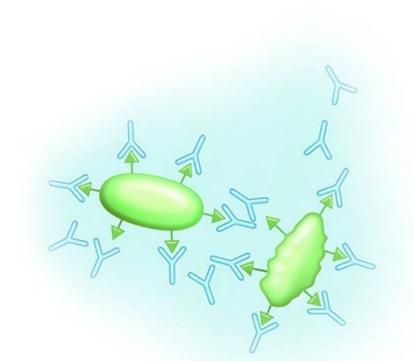

Types of Vaccine

Vaccine	Examples
Immunoglobulin (IG)	Varicella Zoster IG
	Human Normal IG
	Hep B IG, Tetanus IG
Anti-toxins	Diphtheria anti-toxin
	Botulinum anti-toxin
Inactivated/subunit vaccine	Diphtheria/tetanus/acellular pertussis /inactivated polio/ <i>Haemophilus influenzae</i> b (DTaP/IPV/Hib)
	Meningococcal C (MenC),
	Pneumcoccal (PPV & PCV)
	Human papillomavirus vaccine (HPV)
	Hepatitis A vaccine (HAV)
	Hepatitis B vaccine (HBV),
Live attenuated	Measles, mumps and rubella (MMR),
	Yellow fever

How vaccines work

- They fool the body into thinking it is infected with a bug so that next time when it sees the real thing it will be ready faster with a more powerful response
- They induce the adaptive system to remember, recognize, and kill baddies-- viruses, bacteria, parasites or cancer cells
- Sometimes they get the body to do something different and better then if it were naturally infected

How Do Vaccines Work?



- Vaccines deliver antigens to the skin or muscle.

 antigens are fragments of infectious agents
- The antigen is ingested by an antigen presenting cell (APC)
- The APC travels to a lymph node where it interacts with lymphocytes.
- Antigen=anti(body) gen(erating)

Image: Sarah Keenihan

How Do Vaccines Work?

- In the lymph node, specific lymphocytes targeted at the antigen in the vaccine are produced
 - these cells persist as memory cells
- Then if an infection occurs, the memory cells are primed and ready to produce antibodies specific to the antigen.

Image: © Dorling Kindersley

Determinants of vaccine response

Determinants	Mechanisms (presumed)
Vaccine type	
Live vs inactivated	Live vaccines generally induce more sustained Ab responses, presumably through Ag persistence within the host.
Polysaccharide antigens	Failure to generate GCs limits the induction of memory responses and of high-affinity long-live plasma cells.
Vaccine schedule	
Interval between primary doses	A minimal interval of 3 weeks between primary doses allows development of successive waves of Ag- specific primary responses without interference.
Interval before boosting	A minimal interval of 4 months between priming and boosting allows affinity maturation of memory B cells, and thus higher secondary responses.
Age at immunization	Early life immune immaturity and age-associated immunosenescence limit the induction/persistence of long-live plasma cells
Environmental factors	?

Determinants of secondary B cell response

Determinants	Mechanisms (presumed)	
Post-primary antibody titers	As plasma cells and memory responses are generated in parallel in GCs, higher post-primary Ab titers reflect stronger GC reactions and generally predict higher secondary responses.	
Residual antibodies at boosting	Neutralization of live viral vaccines; negative feedback mechanisms on non-live vaccines.	
Lower antigen dose at priming	A limited quantity of antigen may induce B cell differentiation away from PCs, towards memory B cells (?).	
Longer intervals before boosting	A minimal interval of 4-6 months is required for optimal affinity maturation of memory B cells.	
Higher antigen dose at boosting	A higher availability of antigen may drive higher numbers of memory B cells into differentiation.	
Antigen availability		
Exogenous exposure	Exposure to exogenous antigens may reactivate or favor the persistence of memory B cells.	
In vivo persistence	Antigen persistence may reactivate or favor the persistence of memory B cells.	

- Only applies to diseases which are passed from person to person
- For each disease
 - a certain level of immunity in the population which protects the whole population because the disease stops spreading in the community
- Provides indirect protection of unvaccinated as well as vaccinated individuals.
- May be the most important aspect of how vaccines work
 - MMR given to infants protects pregnant women from rubella.
 - Can eradicate disease even if some people remain susceptible

Herd immunity

- Only applies to diseases which are passed from person to person
- For each disease
 - a certain level of immunity in the population which protects the whole population because the disease stops spreading in the community
- Provides indirect protection of unvaccinated as well as vaccinated individuals.
- May be the most important aspect of how vaccines work
 - MMR given to infants protects pregnant women from rubella.
 - Can eradicate disease even if some people remain susceptible

//www.immunisation.nhs.uk/About_Immunisation/Science/How_immunisation_works

www.immunisation.ie

Antigen presenting cells:

• Cells that capture antigens by phagocytosis, process them into small peptides, display them at their surface and provide co-stimulation signals that help activate antigen-specifi c T cells. Antigen presenting cells include B cells, macrophages and dendritic cells,

B lymphocytes:

• Cells that originate in the bone marrow, mature in secondary lymphoid tissues, become activated in the spleen/nodes when their surface immunoglobulins bind to an antigen and differentiate either in a (plasma cells) or in memory B cells.

Carrier protein:

• A protein that is used as a template to which polysaccharide moieties are chemically conjugated to generate glycoconjugate vaccines.

CD4+ T helper 1 lymphocytes:

 CD4+ T cells that upon activation differentiate into cells that mainly secrete IL-2, IFN-γ and TNF-β, exerting direct antimicrobial functions (viruses) and providing support to cytotoxic T cells and macrophages.

CD4+ T helper 2 lymphocytes:

• CD4+ T cells that upon activation differentiate into cells that mainly secrete IL-4, IL-6, IL-6, IL-10, IL-13, exerting direct antimicrobial functions (parasites) and providing support to B lymphocytes.

Central memory T cells:

• Memory T cells trafficking through the lymph nodes, ready to proliferate and generate a high number of effector cells in response to specific microbial peptides.

Dendritic cells:

- Cells that constantly sample the surroundings for pathogens, detect dangers and initiate immune responses.
- Contact with a pathogen induces maturation and the expression of certain cell-surface
- molecules, greatly enhancing their ability to activate T cells.

Effector memory T cells:

• Memory T cells patrolling through the body to detect specific microbial peptides and capable of an immediate cytotoxic function in case of recognition

Germinal centers:

- Dynamic structure that develop in spleen/nodes in response to an antigenic stimulation.
- Contain antigen-specifi c B cells that proliferate and differentiate through the support provided by follicular dendritic cells and helper T cells.
- Immunoglobulin class switch recombination, affinity maturation, B cell selection and
- differentiation into plasma cells or memory B cells essentially occur in GCs.

Regulatory T cells:

 T cells that upon activation differentiate into cells that express specific cytokines (IL-10, TGF-β/surface markers) and act to suppress the activation of the immune system, maintaining tolerance to self antigens.

T lymphocytes:

- Cells that originate in the thymus, mature in the periphery, become activated in the spleen/nodes if
 - 1) their T cell receptor bind to an antigen presented by an MHC molecule and
 - 2) they receive additional costimulation signals driving them to acquire killing or supporting functions.

T-independent B cell responses:

- Differentiation pathway of B cells, mainly elicited by polysaccharides, that takes place in the spleen/nodes.
- Its hallmarks are to be rapid (days) but to elicit the transient (months) production of antibodies of low affi nity, without inducing immune memory.

T-dependent B cell responses:

- Differentiation pathway of B cells elicited by protein antigens that recruits T and B cells into spleen/nodes.
- Its hallmarks are to be slow (weeks) but to elicit long-lasting (years) production of antibodies of high affinity, and immune memory.

Toll-like receptors:

- Family of 10 receptors present at the surface of many immune cells.
- Recognize pathogens through conserved microbial patterns and activate innate immunity when detecting danger.